Abstract

In this study, a series of three-point bending tests were carried out with notched beam structures made of polyvinyl alcohol (PVA) fiber-reinforced ultra-high-performance concrete (UHPC) to study the effect of volume fractions of PVA fibers on the fracture characteristics of the UHPC-PVAs. Furthermore, in order to meet the increasing demand for time- and cost-saving design methods related to research and design experimentation for the UHPC structures, a relevant hybrid finite element and extended bond-based peridynamic numerical modeling approach is proposed to numerically analyze the fracture behaviors of the UHPC-PVA structures in 3D. In the proposed method, the random distribution of the fibers is considered according to their corresponding volume fractions. The predicted peak values of the applied force agree well with the experimental results, which validates the effectiveness and accuracy of the present method. Both the experimental and numerical results indicate that, increasing the PVA fiber volume fraction, the strength of the produced UHPC-PVAs will increase approximately linearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.