Abstract
We report a detailed study of superconductivity in polycrystalline SnTaS2 using electrical transport, magnetization and heat capacity measurements. SnTaS2 crystallizes in centrosymmetric hexagonal structure with space group . Electrical resistivity, magnetization and specific heat data suggest SnTaS2 to be a weakly coupled, type-II superconductor with K. First-principles calculations show signature for nodal line topology in the electronic band structure, protected by the spatial-inversion and time-reversal symmetries, that strongly gapped out by the inclusion of spin–orbit coupling. Superconductivity in layered SnTaS2 with nodal line topological state makes it a strong candidate to be considered for a 3D topological superconductor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.