Abstract

In this article, a new type of reticulated joint, named the steel–concrete composite reticulated shell joint, is proposed. The proposed reticulated shell joint consists of an inner circular steel pipe, an outer circular steel pipe, a steel cover plate, and internal concrete. Five test specimens were tested under axial compression. The variable study included the wall thickness of the inner and outer circular steel pipes and the radius of the inner circular steel pipe. The test specimens exhibited a high bearing capacity and good plastic deformation ability under axial compression. The test results show that the wall thickness of the outer circular steel pipe and the radius of the inner circular steel pipe have a great influence on the bearing capacity of the steel–concrete composite reticulated shell joint, while the wall thickness of the inner circular steel pipe has little influence on the bearing capacity of the steel–concrete composite reticulated shell joint. Based on the test of the steel–concrete composite reticulated shell joints under axial load, the three-dimensional nonlinear finite element model was used to analyze the mechanical properties of the steel–concrete composite reticulated shell joints under axial compression. The results of the finite element analysis showed good agreement with the experimental results. The formula for calculating the bearing capacity of the joint is derived. By comparing with the experimental results, the calculated results are basically consistent with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.