Abstract

Finite element studies are presented on both mode I and mixed mode stable crack growth under static loadings through an aluminium (D16AT) alloy. A COD based criterion has been used to predict the load-displacement diagram from initiation to instability. The theoretical predictions are compared with experimental results presented in Part I. Results on computed crack profiles, stress-strain distribution ahead of the crack tip, J integrals, J resistance curves, plastic zones, etc., are included. The study indicates that the load-displacement diagram associated with a mixed mode stable crack growth in a compact tension type of specimen geometry can be predicted reasonably accurately using the criterion of a fixed crack opening displacement at a finite distance behind the crack tip provided the crack is allowed to grow in the direction of initial growth in the finite element analysis. The crack assumes a more blunted profile in a mixed mode than in the mode I at all the stages of stable extension. The distributions of normal stress and strain in the direction perpendicular to the crack extension line, ahead of the current crack tip, have similarities between the mode I and mixed mode, irrespective of loading angle. Both the stress and strain levels increase as the crack extension proceeds. In a mixed mode, the J integral at the onset of crack extension is the lowest compared with the values at the later stages of the extension. Further, the tearing modulus associated with initial kinking is very small; it becomes close to the mode I values at the later stages. The tearing modulus remained approximately constant during the whole mode I stable growth and it had a similar trend subsequent to kinking in a mixed mode. The specific work of crack extension is zero as Δa → 0 and it increases gradually with Δa irrespective of the mode of loading; the actual variation depends on the loading angle. The plastic zone size grows as the stable extension progresses; the growth is approximately the maximum along the crack extension line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.