Abstract

Micro-milling process is a direct and flexible fabrication method in producing functional three dimensional micro-products. The advance of micro-milling process ultimately depends on the development of micro cutting tools since it is a tool-based process. Therefore, in this study an attempt to improve the performance of carbide micro-end mills by applying cubic boron nitride (cBN) coating was carried out. Experiments and finite element method (FEM) based simulations were used to study the effect of cBN coated tool in micro-machining of Ti-6Al-4V titanium alloy. The experiments were conducted to compare the performance of cBN coated and uncoated micro-end mills in terms of surface roughness, burr formation and tool wear. FE simulations were employed to investigate chip formation process in micro-milling to reveal the effects of cBN coated micro-end mills with increased edge radius in terms of cutting force generation, tool temperature and contact pressure, sliding velocity and hence tool wear rate. The simulation results were further utilized for estimating tool life using a sliding wear rate model and compared with experiments. This study clearly showed that the cBN coated carbide tool outperformed the uncoated carbide tool in generation of tool wear and cutting temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.