Abstract

Bone cutting is an essential procedure of orthopedic surgery, while irreversible bone damage would be inevitably caused using the conventional cutting (CC) method. In this study, an ultrasonic vibration-assisted cutting (UVAC) method was applied in bone cutting to investigate the cutting performance, considering the cutting force and temperature rise, in comparison with CC. In addition, a finite element (FE) model was developed to investigate the cutting mechanism and the influence of a wide range of processing parameters on the performance of cutting bone. The results indicate that the proposed FE model shows good correlation with the experimental results for both cutting force and temperature. UVAC can significantly reduce the cutting force and increase the temperature in comparison with CC from the experimental and predicted results. The cutting force tends to decrease with the increasing vibrational parameters and decreasing cutting speed, while the temperature increases. The verified FE bone cutting model provides an efficient way to assist the optimization of the processing conditions in bone cutting operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call