Abstract
The reliability of a mechanical component depends to a large extent on the physical state of its surface layers. This state includes the distribution of residual stresses induced by machining. Residual stresses in the machined surface and subsurface are affected by the cutting tool, work material, contact conditions on the interfaces, cutting regime parameters (cutting speed, feed and depth of cut), but also depends on the cutting procedure. In this paper, the effects of cutting sequence on the residual stress distribution in the machined surface of AISI 316L steel are experimentally and numerically investigated. In the former case, the X-ray diffraction technique is applied, while in the latter an elastic-viscoplastic FEM formulation is implemented. The results show that sequential cut tends to increase superficial residual stresses. A greater variation in residual stresses is observed between the first and the second cut. Moreover, an increase in the thickness of the tensile layer is also observed with the number of cuts, this difference also being greater between the first and the second cut. Based on these results, the residual stress distribution on the affected machined layers can be controlled by optimizing the cutting sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.