Abstract

Steam reforming of bio-oil for hydrogen production is a promising green technology. Acetic acid was used as the bio-oil model compound. Experimental and density functional theory calculations were carried out to study the performance of Co/Al2O3 catalysts doped with boron (B) with a 1 wt.%–5 wt.% content. Catalyst characterization by BET, XRD, XPS, NH3-TPD, H2-TPR, TEM, and TG-DTG was performed. We found that the catalyst performance improved significantly by B doping. Under the reaction conditions of T = 500 °C, steam-to-carbon ratio (S/C) = 5, and liquid hourly space velocity (LHSV) = 4.3 h−1, the catalyst with a B doping ratio of 1 wt.% had the highest hydrogen yield of 85% and a maximum acetic acid conversion rate of 95%. The corresponding hydrogen productivity was 0.8 mmol/min. The stability of this catalyst exceeded 29 h. Density functional theory calculations showed that the interactions between the reaction intermediates and the surface were strengthened with B addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call