Abstract

In the current work we have applied the experimental and quantum chemical techniques to study the electro-optical and nonlinear optical properties of l-proline cadmium chloride monohydrate (LPCCM). Synthesis and good quality single crystals of LPCCM were grown (size=20mm×12mm×10mm). Crystal structure was confirmed by powder X-ray diffraction study. The calculated FT-IR and FT-Raman frequencies were analyzed. Detailed optical studies were carried out and various optical parameters are calculated. Using density functional theory, molecular geometry of LPCCM was optimized within framework of B3LYP/6-31G∗. The calculated HOMO–LUMO energy gap of 5.484eV and transition energy of 5.565eV has been found in semi-quantitative agreement with experimental results. The value of dipole moment and first hyperpolarizability of LPCCM are found to be 2 and 6 times respectively, higher than that of urea. The obtained results reveal that the titled compound is a good candidate for nonlinear applications having an excellent transparency trade-off value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call