Abstract

Experimental studies and ab initio quantum chemistry calculations were combined to investigate the process by which a Fenton reaction breaks down polystyrene sulfonate. The experimental results show that both molecular weight reduction and loss of aromaticity occur nearly simultaneously, a finding that is supported by the calculations. The results show that more than half of the material is broken down to low molecular weight compounds (< 500 g/mol) with two molar equivalents of H2O2 per styrene monomer. The calculations provide insights into the reaction pathways and indicate that at least two hydroxyl radicals are required to cleave backbone CC bonds or to eliminate aromaticity. The calculations also show that, of the aromatic carbons, hydroxyl radical is most likely to add to the carbon bonded to sulfur. This finding explains the loss of hydrogen sulfite anion early in the process and also the efficient reduction of Fe(III) to Fe(II) through semiquinone formation. Taken together the experimental and computational results indicate that the reaction is very efficient and that very little H2O2 is lost to unproductive reactions. This high efficiency is attributed to the close association of Fe atoms with the sulfonate group such that hydroxyl radicals are generated near the polymer chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call