Abstract

A series of experiments designed to study reacting nitrogen flow over double-wedge geometries was conducted in the T5 shock tunnel at the California Institute of Technology. These experiments were designed using computational fluid dynamics to test nonequilibrium chemistry models. Surface heat transfer rate measurements were made, and holographic Mach-Zehnder interferometry was used to visualize the flow. Analysis of the data shows that computations using standard thermochemical models cannot reproduce the experimental results. The computed separation zones are smaller than the experiments indicate. However, the computed heat transfer values match the experimental data in the separation zone, and on the second wedge the computed heat transfer distribution matches the shape and heights of the experimental distribution but is shifted due to the difference in the size of the separation zones

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.