Abstract

Understanding the distance distribution and dynamics between moieties attached to the walls of a resorcin[4]arene cavitand, which is switchable between an expanded kite and a contracted vase form, might enable the use of this molecular system for the study of fundamental distance-dependent interactions. Toward this goal, a combined experimental and molecular dynamics (MD) simulation study on donor/acceptor borondipyrromethene (BODIPY) dye-labeled cavitands present in the vase and kite forms was performed. Direct comparison between anisotropy decays calculated from MD simulations with experimental fluorescence anisotropy data showed excellent agreement, indicating that the simulations provide an accurate representation of the dynamics of the system. Distance distributions between the BODIPY dyes were established by comparing time-resolved Förster resonance energy transfer experiments and MD simulations. Fluorescence intensity decay curves emulated on the basis of the MD trajectories showed good agreement with the experimental data, suggesting that the simulations present an accurate picture of the distance distributions and dynamics in this molecular system and provide an important tool for understanding the behavior of extended molecular systems and designing future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.