Abstract

Hydrogen chloride (HCl) contributes substantially to the atmospheric Cl; both species could affect the composition of Earth's atmosphere and the fate of pollutants. Here, we present the kinetics study for syn-CH3CHOO reaction with HCl using experimental measurement and theoretical calculations. The experiment was conducted in a flow tube reactor at a pressure of 10 Torr and temperatures ranging from 283 to 318 K by using the OH laser-induced fluorescence (LIF) method. Transition-state theory and quantum chemistry calculations with QCISD(T) were used to calculate the rate coefficients. Weak negative temperature dependence was observed with a measured activation energy of -(2.98 ± 0.12) kcal mol-1 and a calculated zero-point-corrected barrier energy of -3.29 kcal mol-1. At 298 K, the rate coefficient was measured to be (4.77 ± 0.95) × 10-11 cm3 s-1, which was in reasonable agreement with 2.2 × 10-11 cm3 s-1 from the theoretical calculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call