Abstract

A hybrid experimental-computational study has been conducted in order to determine the propagational characteristics of mechanical waves in granular materials. The experimental investigation has used the method of dynamic photoelasticity to collect photographic data which provide information on the wave speeds, integranular contact loadings, and wave-spreading characteristics. The computational study employed the use of the distinct-element method whereby the motion of each granule in the material is modeled by rigid-body dynamics assuming each particle interaction has particular frictionless stiffness and damping forces. The experimental results provide special dynamic material constants necessary for the computational modeling, and they also provide data for comparison purposes. Results from the experimental and computational studies compare well with each other and indicate that local microstructure plays an important role in the wave propagation through such materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.