Abstract

Formation mechanisms of precipitate free zones (PFZ) in an artificially aged Al–1.74 mol%Cu alloy have been clarified using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and a Monte Carlo computer simulation. The vacancy depletion mechanism caused by the annihilation of quenched-in excess vacancies was found to work predominantly in the early stage of aging at 433 K, whereas the solute depletion mechanism caused by the grain boundary precipitation followed thereafter. The simulation model taking into account such a vacancy depletion effect well reproduced the obtained experimental results, suggesting that the difference of size distribution of Cu clusters after quenching is responsible for the initial formation of PFZ in the subsequent aging stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.