Abstract

Utilising biomass for thermal generation purpose is one of the ways to reduce CO2 emissions. For that reason, the biomass gasification process is used to produce rich heating value fuel which is known as syngas. Because of the complicated nature of this field, the research should comprise both conducting experimental investigation on actual facilities and developing a numerical model. This study compared the affection of two kinds of gasification agents, the air and the air-steam mixture, on the composition of syngas and cumulative CO. The ratio of steam for the best quality of syngas was then determined. The two-dimensional Computational Fluid Dynamics (CFD) was developed for determining the suitable kinetics model. The parameters of geometry were taken from practical pilot plant gasifier. The validation process for this simulation was carried out by comparing the simulation data with experimental data which was measured by online gas analyser-TESTO 350XL. The results illustrate the influence of air-steam mixture on the composition of CO and H2 in syngas, H2/CO ratio, and the advantage of using the stream in gasification on both experimental and simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.