Abstract

Quantum chemical calculations have unveiled the unexpected biradical character of titanium(IV) enolates from N-acyl oxazolidinones and thiazolidinethiones. The electronic structure of these species therefore involves a valence tautomerism consisting of an equilibrium between a closed shell (formally Ti(IV) enolates) and an open shell, biradical, singlet (formally Ti(III) enolates) electronic states, whose origin is to be basically found in changes of the Ti-O distance. Spectroscopic studies of the intermediate species lend support to such a model, which also turns out to be crucial for a better understanding of the overall reactivity of titanium(IV) enolates. In this context, a thorough computational analysis of the radical addition of titanium(IV) enolates from N-acyl oxazolidinones to TEMPO has permitted us to suggest an entire mechanism, which accounts for the experimental details and the diastereoselectivity of the process. All together, this evidence highlights the relevance of biradical intermediates from titanium(IV) enolates and may be a useful contribution to the foundations of a more insightful comprehension of the structure and reactivity of titanium(IV) enolates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.