Abstract

In the current work, numerical evaluation of phase change material along with experimental validation of the same in a handheld device is presented. The value addition and driving force towards the use of phase change material (PCM) is not only due to limited heat dissipation capability and computational sprinting power load patterns in processors but also to have better user experiences of these hand held devices such as low touch temperatures, no fan noise and possibility of extended battery life by reducing the discharge cycles without fan loads. Direct placement of PCMs on the die or encapsulating the heat pipe, that has the quickest response to temperatures as a passive thermal management strategy is explored in this study. This paper proposes an accurate phase change model for transient thermal management using COMSOL Multiphysics®software. Impact of geometry of PCM material and its properties on the transient behavior of the CPU's temperature is provided. The model validations are carried out by comparing the results with controlled experimental results. The PCM material and their material properties are being provided by Outlast Technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call