Abstract
The development of innate and/or acquired resistance to human epidermal growth factor receptor type-2 (HER2)-targeted therapy in HER2-positive breast cancer (HER2 + BC) is a major clinical challenge that needs to be addressed. One of the main mechanisms of resistance includes aberrant activation of the HER2 and phosphatidylinositol 3-kinase/AKT8 virus oncogene cellular homolog/mammalian target of rapamycin (PI3K/Akt/mTOR) pathways. In the present work, we propose to use a triple combination therapy to combat this resistance phenomenon. Our strategy involves evaluation of two targeted small molecule agents, everolimus and dasatinib, with complementary inhibitory circuitries in the PI3K/Akt/mTOR pathway, along with a standard cytotoxic agent, paclitaxel. Everolimus inhibits mTOR, while dasatinib inhibits Src, which is a protein upstream of Akt. An over-activation of these two proteins has been implicated in approximately 50% of HER2 + BC cases. Hence, we hypothesize that their simultaneous inhibition may lead to enhanced cell-growth inhibition. Moreover, the potent apoptotic effects of paclitaxel may help augment the overall cytotoxicity of the proposed triple combination in HER2 + BC cells. To this end, we investigated experimentally and assessed computationally the in vitro pharmacodynamic drug-drug interactions of the various dual and triple combinations to assess their subsequent combinatorial effects (synergistic/additive/antagonistic) in a HER2-therapy resistant BC cell line, JIMT-1. Our proposed triple combination therapy demonstrated synergism in JIMT-1 cells, thus corroborating our hypothesis. This effort may form the basis for further investigation of the triple combination therapy in vivo at a mechanistic level in HER2-therapy resistant BC cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.