Abstract
A set of experimental analyses was conducted to determine static pressure drops inside non-metallic flexible, spiral wire helix core ducts, with different bent angles. In addition, Computational Fluid Dynamics (CFD) solutions were performed and verified by comparing them to the experimental data. The CFD computations were carried out to produce more systematic pressure drop information through these complex-geometry ducts. The experimental setup was constructed according to ASHRAE Standard 120-1999. Five different bent angles (0, 30, 45, 60, and 90 degrees) were tested at relatively low flow rates (11 to 89 CFM). Also, two different bent radii and duct lengths were tested to study flexible duct geometrical effects on static pressure drops. FLUENT 6.2, using RANS based two equations - RNG k-ε model, was used for the CFD analyses. The experimental and CFD results showed that larger bent angles produced larger static pressure drops in the flexible ducts. CFD analysis data were found to be in relatively good agreement with the experimental results for all bent angle cases. However, the deviations became slightly larger at higher velocity regimes and at the longer test sections. Overall, static pressure drop for longer length cases were approximately 0.01in.H2O higher when compared to shorter cases because of the increase in resistance to the flow. Also, the CFD simulations captured more pronounced static pressure drops that were produced along the sharper turns. The stronger secondary flows, which resulted from higher and lower static pressure distributions in the outer and inner surfaces, respectively, contributed to these higher pressure drops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.