Abstract

In order to fully understand the performance of composite joints in a truss bridge with double decks, fatigue tests of three composite joints with different connectors such as headed studs, concrete dowels and perforated plates under constant repeated loading were carried out, and the responses of displacement, strain distribution, crack development, relative slip between concrete and steel were observed after different loading cycles. The experimental results showed that the deflection increased almost linearly with applied load even after certain repeated loading cycles, but the stiffness reduced gradually with the repeated loading cycles. No serious damage occurred except tiny cracks at the steel–concrete interface caused by slip after 2 million repeated loading cycles, which means all three composite joints have good fatigue performance. Based on experimental works, three dimensional finite element models of composite joints were established. The results from finite element analysis were consistent with those from tests in terms of strength and stiffness. Finally, the fatigue details involving reinforcing bars, welding seams and shear connectors were evaluated according to related specifications. The presented overall investigation may provide reference for design and construction of composite joints in composite truss bridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.