Abstract

Due to ac loss in superconducting materials, high cryogenic costs are inevitable when superconducting devices are operated in ac power networks. Thus, dc electric power networks would be regarded as a better choice for the operation of superconducting devices. In order to develop superconducting devices for a dc network, the dc insulation characteristics, which are much different from the ac insulation characteristics, should be clarified. In this paper, in order to investigate the dc insulation characteristics of polypropylene laminated paper (PPLP), which is generally used for dc superconducting cable, a dc breakdown test and a dc electric field analysis were performed. For the dc breakdown test, specimens with three layers of PPLP with one butt gap were fabricated. In order to reveal the breakdown characteristic of PPLP, a dc electric fields calculation in the media at the moment of breakdown was performed considering capacitive and resistive field distributions. Consequently, the capacitive electric field and resistive electric field distributions were determined using dc field analysis techniques and it was found that the butt gap edge is affected enough by the high field strength to cause the breakdown. Furthermore, it was deduced that the butt gap edge acted as a triple-junction point which causes the breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.