Abstract

The characteristics of lead-bismuth(Pb-Bi)-water boiling two-phase flow were investigated experimentally and analytically using a Pb-Bi-water direct contact boiling two-phase flow loop. Pb-Bi flow rates and void fraction were measured in a vertical circular tube at conditions of system pressure 7MPa, liquid metal temperature 460°C and injected water temperature 220°C. The drift-flux model with the assumption that bubble sizes were dependent on the fluid surface tension and the density ratio of Pb-Bi to steam-water mixture was chosen and modified by the best fit to the measured void fraction. Pb-Bi flow rates were analytically estimated using balance condition between buoyancy force and pressure losses, where the buoyancy force was calculated from void fraction estimated using the modified drift-flux model. The deviation of the analytical results of the flow rates from the experimental ones was less than 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.