Abstract
This paper presents an experimental and analytical study of bouncing vibrations of a flying head slider in near-contact and contact regimes. In our experiment we showed that, by reducing the ambient pressure, the slider begins to touch-down and exhibit bouncing vibrations, and by increasing the ambient pressure thereafter, the slider continues to vibrate until an ambient pressure higher than the touch-down pressure. In the analysis we used a two-degrees-of-freedom slider model with linear front and rear air-bearing springs and dashpots. In a numerical simulation of slider dynamics, we considered rough surface contact of the trailing air-bearing pad with a disk, including bulk deformation, adhesion force of lubricant and friction force. The disk is assumed to have no microwaviness. From the simulation of decreasing and increasing nominal flying height, we found that the slider exhibits a bouncing vibration and touch-down/take-off hysteresis as seen in the experiment. The frequency spectrum characteristics of the bouncing vibration agree well between numerical analysis and the experiment. From a parametric study of the bouncing vibration excited by initial spacing deviation, we found that the unstable flying height range can be decreased by increasing the air-bearing stiffness and can be completely eliminated if the lubricant adhesion force or the frictional coefficient is decreased to certain small values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.