Abstract

Hydrodynamic flexure pivot tilting pad gas bearings (FPTPGBs) can enable successful operation of oil-free microturbomachinery and FPTPGBs with radially compliant pads permit rotor centrifugal and/or thermal growth to exceed original bearing clearances and achieve higher speeds. This work presents the experimental and analytical study of such bearings and the application of dampers behind the pad radial compliance structure. A time domain orbit simulation method was implemented as the primary analysis tool to predict the rotor-bearing response to imbalance, the presence and location of critical speeds, etc., and to compare with test results. Experiments demonstrate the stable hydrodynamic operation of FPTPGBs with an ∼28.6 mm, 0.8 kg rotor above 120 krpm, for the first time. The rotor-bearing system was intentionally destabilized in tests by increasing bearing clearances and the viscoelastic dampers added behind the FPTPGB pads delayed the onset of subsynchronous vibrations (from 43 krpm without damper to above 50 krpm with damper). Midrange subsynchronous vibrations of the destabilized system initiated at ∼20 krpm were suppressed by ∼25 krpm due to the stabilizing effect of rotor centrifugal growth. The viscoelastic dampers had a negligible effect on suppressing these midrange subsynchronous vibrations in experiments, but this was not demonstrated in simulations, presumed to be due to much lower stiffness contribution of the damper at lower frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.