Abstract

Besides the primary threats of a blast loading scenario, flying fragments from nonstructural elements could be a further threat to exposed humans. Point fixed corrugated metal sheets are often applied as facade elements. This paper focuses on the analysis of the dynamic bearing resistance and related pull-out behaviour of such elements. In a first step, the dynamic bearing capacity is investigated by an experimental study. Different sheet thicknesses and dimensions are examined for different loading levels using shock tube experiments. Based on the experimental results an engineering model is applied to predict the overall bearing capacity of the investigated corrugated metal sheet elements using mathematical optimisation methods. In a second step, the comparison to an analytical approach to quantify the prognostic capacity of the theoretical assessment method is addressed. Obtained results enable fast and effective quantification of expected damage effects and can be integrated into an overall risk and resilience analysis scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.