Abstract

This article addresses the response of GLAss fiber REinforced aluminum to hypervelocity impacts of micrometeoroid analogs at impact velocities of 7 km/s and beyond. In relation, the damage modes of different GLAss fiber REinforced aluminum configurations have been exemplified. The GLAss fiber REinforced aluminum configurations comprised six to twelve variably thick aluminum layers and up to four plies of glass fiber reinforced epoxy per composite laminate. Hypervelocity impact experiments have been conducted with the help of a two-stage light-gas gun, wherein aluminum- and stainless steel projectiles were launched at velocities up to 7.15 km/s. Visual inspection of the damage area suggested the dissipation of impact energy in elastic-plastic deformation, petalling, delamination, debonding, tensile failure of fibers, and pyrolysis of epoxy. A prevailing damage mode was not apparent albeit. The quasi-isotropic ply orientation of S2-glass/FM94-epoxy laminates promoted the interference of shock- and rarefaction waves and suppressed the damage area of GLAss fiber REinforced aluminum. To discriminate between the impact performance of different GLAss fiber REinforced aluminum configurations, the energy dissipated in different damage modes of GLAss fiber REinforced aluminum has been assessed quantitatively. In terms of normalized energy, the cross-ply GLAss fiber REinforced aluminum dissipated higher energy in petal formation than in other primary damage modes. The normalized petalling energy was found to decline with the increase of impact energy. The outcomes of this study will help to optimize the GLAss fiber REinforced aluminum laminate, which will be employed as a bumper shield to prevent the fatal damage and the unzipping of a spacecraft pressure bulkhead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call