Abstract
Fast response pressure data acquired in a high-speed 1.5-stage turbine hot gas ingestion rig (HGIR) show the existence of pressure oscillation modes in the rim-seal-wheelspace cavity of a high pressure gas turbine stage with purge flow. The experimental results and observations are complemented by computational assessments of pressure oscillation modes associated with the flow in canonical cavity configurations. The cavity modes identified include shallow cavity modes and Helmholtz resonance. The response of the cavity modes to variation in design and operating parameters are assessed. These parameters include cavity aspect ratio (AR), purge flow ratio, and flow direction defined by the ratio of primary tangential to axial velocity. Scaling the cavity modal response based on computational results and available experimental data in terms of the appropriate reduced frequencies appears to indicate the potential presence of a deep cavity mode as well. While the role of cavity modes on hot gas ingestion cannot be clarified based on the current set of data, the unsteady pressure field associated with turbine rim cavity modal response can be expected to drive ingress/egress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.