Abstract

Natural glauconite, as a mixed-layered clay mineral, was subjected to exfoliation processes, producing silicate monolayers or individual sheets that were further modified with methanol into methoxy exfoliated glauconite (Mth/EXG). The structure was assessed as an enhanced adsorbent for three types of common water contaminants, including phosphate (PO4 3-), safranin-O dye (SFR), and cadmium metal ions (Cd2+). The Mth/EXG structure achieved promising adsorption capacities at the saturation points equal to 269.9mg/g for PO4 3-, 312mg/g for SFR, and 234.5mg/g for Cd2+ which are significantly better than the reported values for several studied adsorbents of higher costs and complex production procedures. The adsorption processes and the predicted regulated mechanisms in terms of the adsorbate/adsorbent interface were illustrated based on the steric and energetic findings that correspond to the applied monolayer equilibrium model of one energy site. The structure displays active site densities of 82.5mg/g (PO4 3-), 136.3mg/g (SFR), and 83.4mg/g (Cd2+), which illustrate the high uptake performance of SFR. Also, the steric parameters reflected the suitability of each existing site to be filled with 4 ions of PO4 3-, SFR, and Cd2+. The adsorption energy (less than 40kJ/mol) in conjunction with free adsorption energy from D-R model (8-16kJ/mol) and steric parameters validate the dominant impact of the multi-ionic physical mechanisms (hydrogen bonding and van der Waals forces), in addition to the assistant impact of some weak chemical processes that might be assigned to the formed inner-sphere complex. Also, these reactions all occurred spontaneously with exothermic behaviors according to the thermodynamic functions. Additionally, the structure exhibit significant affinity for the studied pollutants even in the existing of completive chemical including anions, cations and organic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.