Abstract

This paper addresses the control of the boundary layer on a compression ramp by means of DC electrical arc discharges. The development and realization of the control system are first described and then assessed in the wind tunnel. The objective of the research was to control the supersonic flow using the minimum amount of energy. The array of electrodes was located at the base of a ramp, where a low momentum flow develops. The electrical discharge was generated by a custom designed electronic facility based on high-voltage ignition coils. The slanted tungsten electrodes were insulated by mounting them in a ceramic support. The discharge evolution was studied through high-speed flow visualizations, while electrical measurements at the high-voltage section of the circuitry allowed to estimate the energy release. The development of a high-speed short exposure Schlieren imaging technique, based on a very short duration laser pulse illumination and a double shot CCD camera, allowed to observe the macroscopic effects associated with the arc establishment between the electrodes (glow, sound wave and heat release). Due to the long residence time, the thermal perturbation spread along the streamwise direction. Cross correlation of Schlieren images with short time separation revealed that in supersonic conditions, the discharges led to an overall acceleration of the flow field underneath the oblique shock wave.

Highlights

  • When high voltage is established in between two electrodes, an arc occurs across the electrode gap.[1]

  • This paper addresses the control of the boundary layer on a compression ramp by means of DC electrical arc discharges

  • The macroscopic effects of an electrical arc discharge are a sequence of three phenomena: light emission, sound wave propagation, and heat release

Read more

Summary

Introduction

When high voltage is established in between two electrodes, an arc occurs across the electrode gap.[1]. The macroscopic effects associated with arc discharges are light emission, pressure fluctuations, and thermal phenomena, all with characteristic speeds that differ by several orders of magnitude

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.