Abstract

In this work, a series of laboratory surface fire experiments were performed over a pine needle fuel bed to investigate the effectiveness of a firebreak and the behaviors of a surface fire across a firebreak. Seven wind velocities of 0~3.0 m/s and six firebreak widths of 10~35 cm are varied. The behaviors of a surface fire across the firebreak, the heat flux received by fuel surface and fuel temperature before and after the firebreak are analyzed and compared simultaneously. The main conclusions are as follows: the behaviors of a surface fire spreading across a firebreak under different wind velocities are classified into three categories—no ignition, ignition by flame contact and ignition by spot fires. When the wind velocity is not more than 1.0 m/s, the surface fire cannot successfully cross the firebreak; as wind velocity changes from 1.5 m/s to 2.5 m/s, the fuel after the firebreak can be ignited by flame contact for relatively narrow firebreak conditions; when the wind velocity increases to 3.0 m/s, the burning fuel can be blown away along the fuel bed, and the fuel behind the firebreak will be ignited by spot fire. A linear relationship between the threshold of firebreak width and the fireline intensity is obtained, and the linear fitting coefficient in this paper is larger than the results reported by Wilson (0.36). For no ignition conditions, the fuel temperature and the heat flux received by the fuel after firebreak are significantly lower than those before the firebreak, whereas their variations over time are similar to those before the firebreak for ignition conditions. Moreover, for no ignition conditions, the maximum fuel temperature and the heat flux after the firebreak increase with wind velocity, but decrease with firebreak width. Additionally, when the fuel temperature (253 °C) and the heat flux received by the fuel considering the radiation and convection (43 kW/m2) after firebreak exceed a threshold value, the surface fire can successfully cross the firebreak.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.