Abstract

MR fluid plugging performance by aggregation of magnetized particles in MR fluid is recently expected to be one of the most promising applications in medical or safety devices, such as blood flow control, steam issuing shut-down valve and fuel supply control for automobile. In this study, dynamic response of MR fluid plugging and its breakdown in a pressure mode with complex fluid–wall interactions was experimentally investigated, considering the effects of magnetic flux density, wall surface structure, wall permeability and wall elasticity of tube. Higher endurance pressure is obtained for wall surface groove structure and for steel wall due to a strong anchoring effect by rigid cluster formation in a concave region and strong MR fluid column formation in a channel core region, respectively. Furthermore, MR fluid plugging performance and the fluid storage characteristic of PVA tube as a bio-material was clarified. Because of the large radial expansion of the tube at the applied magnetic region in a pressure mode, PVA tube shows unique characteristics, such as storing MR fluid under magnetic field and MR fluid jet issuing under releasing magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.