Abstract

The paper discusses key material removal and tool wear modes while electrochemical discharge machining on optical glass, a key material used in making lens and instruments. The parametric effects and experimental results obtained using Taguchi’s methodology are discussed in detail. The applied voltage, electrolyte concentration, feed rate, electrode spacing along with some innovative factors like material density and electrode immersion depth were studied. The experimental results are illustrated that applied voltage (22%) was the most significant factor in the material removal (MR) studies; however, in the tool wear (TW) studies, its material density (18.36%) and applied voltage (16.45%) were the significant factors. Surface roughness, Ra values on the fabricated channels were obtained in the range of 0.1 to 1.2 μm. Identification of some prominent material removal modes and its practical correlation was done as an innovative approach through microstructural studies using field emission scanning electron microscopy (FESEM) approach. The MR and TW were correlated with microchipping, cratering, and thermal effects, similar to those found in EDM; these were further analyzed in getting insights and parametric optimizations.KeywordsECDMElectrode immersion depthMaterial removal rates

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.