Abstract

In this paper, we investigate the practical implication of employing virtual massive multiple-input-multiple output (MIMO) based distributed decision fusion (DF) for collaborative wideband spectrum sensing (WSS) in a cognitive radio (CR)-like network. Towards that end, an indoor-only measurement campaign has been conducted to capture the propagation statistics of a 4 × 64 massive MIMO system with one authorized primary user (PU) and 4 unauthorized secondary users (SUs) transmitting simultaneously over a 20 MHz band divided into 1200 subcarriers. The frequency subcarriers belong to an Orthogonal-frequency-division-multiplexing (OFDM)-like set-up without the addition of cyclic prefix (CP) to the transmit symbols. Measurements are accumulated for different relative positions of the SUs which are analyzed to extract fading, shadowing, noise and interference power statistics. Log-likelihood ratio (LLR) based fusion rule and three different sets of sub-optimum fusion rules along with their time-reversed versions are formulated for combining decisions on the availability of each subcarrier transmitted by the SUs. The extracted channel characteristics are incorporated in both analytical and simulated performance analysis of the devised fusion rules for comparison and testing the validity of distributed DF in realistic collaborative WSS scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call