Abstract

Minimally invasive plate osteosynthesis (MIPO) is an effective surgical technique in the repair of humeral and tibial shaft fractures. There is some controversy as to the minimum number of screws required to ensure correct stability to promote healing, especially when dealing with low quality bones. This work compared different systems assembled on synthetic models simulating a comminuted fracture. Group 1 comprised a locking compression plate with four non-locking screws placed at the holes furthest from the fracture. Group 2 differed from group 1 only in the additional use of two screw locking elements (SLE). Group 3 had four rather than two SLE and, finally, Group 4 used 4 locking screws. The compression and torsion tests with static and cyclic loads showed that, in MIPO, two locking screws or two non-locking screws with SLE could be used per segment without any significant loss in stiffness after 1000 cycles, with system stability guaranteed in both cases. However, lower strength and significant loss of stiffness were observed when non-locking screws were used alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call