Abstract

Experimental results from optical and laser spectroscopic measurements on a scaled industrial gas turbine burner at elevated pressure are presented. Planar laser induced fluorescence on the OH radical and OH∗ chemiluminescence imaging were applied to natural gas/air flames for a qualitative analysis of the position and shape of the flame brush, the flame front and the stabilization mechanism. The results exhibit two different ways of flame stabilization, a conical more stable flame and a pulsating opened flame. For quantitative results, one-dimensional laser Raman scattering was applied to these flames and evaluated on an average and single-shot basis in order to simultaneously determine the major species concentrations, the mixture fraction, and the temperature. The mixing of fuel and air, as well as the reaction progress, could thus be spatially and temporally resolved, showing differently strong variations depending on the flame stabilization mode and the location in the flame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.