Abstract

The study of the annular slit flow field is important for energy consumption, transport efficiency, and the force on the capsule for hydraulic capsule transportation. A combination of physical experiments and theoretical analysis was used to study the annular flow field around a capsule that was set in motion at different positions of a horizontal bend pipe. We study the flow velocity distribution of the gap flow field at different bend positions of the capsule by changing the position of the capsule at the bend. We found that the distribution of the flow field remained similar for different starting positions of the capsule, but the flow velocity increased suddenly and dramatically at the inflow section of the ring gap. We recorded different velocity distributions of the annular gap on the concave and convex sides of the pipe; on the convex side, the streamline of the gap was smooth, and the change in velocity was relatively small. The flow velocity of the slit flow varied more notably on the concave side of the pipe, and there was a greater fluctuation in the flow velocity distribution. Because the effects of the capsule and the pipe on water flow were not the same, we found large fluctuations in gap flow velocity at different measuring points on the concave side. Gap flow velocity was most influenced by axial flow velocity. We found that the axial flow velocity was about one order of magnitude greater than the radial flow velocity or circumferential flow velocity. In this paper, we analyze the changes in the ring gap flow field of the capsule at different bending positions and analyze the reasons for the flow field changes and the flow velocity distribution law. This is of great significance to the study of the transport efficiency and energy consumption of the capsule. The results of this paper complement the study of capsule initiation at different positions in the bend and provide a reference point in terms of transport efficiency, energy consumption, and capsule stress. The results of this study promote the development of hydraulic capsule transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call