Abstract

This paper presents the results of an experimental study of the shear behavior of masonry walls made of aero autoclaved concrete (AAC) blocks strengthened by externally bonded fiber-reinforced polymer (FRP) composites. Fifteen small wall specimens were constructed and tested in a diagonal compression scheme. Two types of composite materials—carbon- and glass-reinforced polymers—were arranged in two configurations of vertical strips, adopted to the location of the unfilled head joints. The effect of the strengthening location and strengthening materials on changes in the strength and deformability parameters are discussed and the failure process of unstrengthened walls is also presented. The placement of the composite on unfilled head joints proved to be a better solution. Carbon-fiber-reinforced polymer (CFRP) strips provided a threefold increase in stiffness, a 48% increase in load-bearing capacity and a high level of ductility in the post-cracking phase. Glass-fiber-reinforced polymer (GFRP) strips offered a 56% increase in load-bearing capacity but did not change the stiffness of the masonry and provided relatively little ductility. Placing the composite between unfilled joints was only reasonable for CFRP composites, providing a 35% increase in load-bearing capacity but with negligible ductility of the masonry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.