Abstract

Joining is an important process in a number of industries, such as aerospace, automotive, oil, and gas. Many products cannot be fabricated as a single piece, so components are fabricated first and assembled later. Joining technology can be classified as a liquid-solid-state process and mechanical means. Liquid-solid-state joining includes welding, brazing, soldering, and adhesive bonding. Mechanical joining includes fasteners, bolts, nuts, and rivets. Metal joining is a process that uses heat to melt or heat metal just below the melting temperature. The main principle is a shear condition of material. In case of shear test of conventional riveting joints, their strength is determined by the mechanical properties of the fastener material is high. Hence, it is expedient to have more insight on the fracture mechanism of various joints during tensile tests. This paper discusses the strength of self piercing rivets of sheet materials that is aluminum alloy, and their arrangements. This thesis presents a study of the effect of controllable self piercing rivet parameters, mainly tensile force, rivet length, rivet diameter tolerance, hole countersunk depth and hole diameter tolerance, on the quality of formed rivet. The quality of a formed rivet is determined by the geometry of its head formation and the extent to which the hole is filled. The study determines. The study is performed using finite element simulation of the riveting process. Theoretical relations between tensile force and formed rivet geometry derived in this study is used to validate the finite element model. Statistical design of experiment is employed to analyze the simulation data of riveting and determine the effect of individual factors, their interactions and relationship with the quality of formed self piercing rivet. The results demonstrate that the correct formation of rivet head geometry depends upon all the factors studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.