Abstract

Mammalian conceptuses typically have an approximately regular tetrahedral shape at the 4-cell stage. In the rabbit, this has been attributed to both 2-cell blastomeres dividing meridionally, but with the animal-vegetal axis of the second blastomere to divide rotating through roughly 90 degrees before or during cytokinesis. The aim of the present study was to ascertain whether this was also true for the mouse. First, the distribution in regular tetrahedral 4-cell conceptuses of fluorescent microspheres applied to the vegetal polar region of one or both blastomeres at the 2-cell stage was analysed. Second, the ability of 2-cell stages to form regular tetrahedral 4-cell conceptuses after the previtelline space had been gelated to prevent blastomeres from rotating was also investigated. Neither experiment yielded evidence supporting blastomere rotation during second cleavage. Rather, the findings were consistent with the regular tetrahedral form of 4-cell conceptus resulting from meridional division of one blastomere and approximately equatorial division of the other. Second cleavage in the mouse typically yields 4-cell conceptuses with three distinct types of blastomere. While both products of the meridional division include all axial levels of the zygote, those of the equatorial division acquire only its vegetal or animal half.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.