Abstract
The present study contains an experimental analysis of the vibratory response in a low-cylinder engine motorcycle at varying suspension preloads. Three different speed bumps of varying heights were used to subject the motorcycle to different vibrations. The analysis was carried out in three domains: time, frequency, and time-frequency. A triaxial accelerometer was used to measure the vibrations at the seat of the vehicle. The results indicated that the suspension system became more differentiated as the height of the bumps increased. However, for lower bumps, the action of the three spring preloads studied was quite similar. Quantitatively, only the higher bump showed a significant difference between the set preloads. The spectral distribution revealed that the frequency of interest was below 20 Hz for all the studied cases, which is in the same range of human body natural frequencies. The findings of this research can be utilized to enhance the design of low-cost motorcycles, thereby improving the safety and comfort of their drivers and passengers. This study constitutes a significant step towards developing an affordable system capable of gathering sufficient data to support the creation of evidence-based public health policies and propose new transport industry standards based on field measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.