Abstract

An experimental device was designed to perform the thermal and dynamic study of natural convection airflow in an open vertical channel. The two side walls of the vertical channel are made of Plexiglas allowing the visualization of the flow via the particle image velocimetry (PIV) method. For the two other vertical walls, one is heated at a constant temperature, and the other is insulated with a 9-cm thick polystyrene insulation. The dynamic characterization of convection is carried out by nonintrusive measurements (PIV), and thermal phenomena are analyzed using nonintrusive heat flux instrumentation (simultaneous temperature and velocity measurements have been carried out across the channel at different elevations). Moreover, this study deals with the influence of the Rayleigh number on the measured vertical velocity profiles as well as the thermal flux densities recorded along the heated wall. To do this, different values of the modified Rayleigh numbers were considered in the interval with the channel aspect ratio of A = 5 and A = 12.5. The obtained Nusselt number values have been compared successfully with those of the literature. The impacts of the Rayleigh number and the aspect ratio on the velocity profiles and the convective and radiative heat transfer have been examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.