Abstract
For industries that use pumps and mixers in their process operations, it is of paramount importance to control the leakage from these equipments. The leakage presents safety hazards and economic loss. It is widely believed that the majority of downtime associated with a pump or a mixer is the result of a mechanical seal failure. Therefore, it is important for these industries to have a mechanical seal that is a reliable performer and enables a longer operational life than what exist in the market at present. The aim of this research was to design and test a mating ring with superior thermal performance that could be used in the conventional seal arrangement without modification to the existing arrangement. The new design was called Fin Mating Ring. The design had radial fins on its circumference and it could replace an existing conventional mating ring without modification to the gland. This thesis contains both an analytical and experimental phases associated with the performance of the new design. Different designs were created and optimized by using Finite Element Analysis (ANSYS). The performances of the new designs are compared with the heat transfer characteristics of the conventional design. Experimental measurements of temperature, flow rates, and pressure in both the new mechanical seal design and the existing conventional seal were performed. Both were tested using the same flow, pressure, rotational velocity and coolant (flush). The test results revealed that the temperatures measured in the new design (Fin Mating Ring) were lower than the conventional ring. Therefore, the fin mating ring design had superior heat transfer characteristic that the existing conventional mating ring. Due to the lower surface temperatures, the fin mating ring design is expected to have a lower wear rate than the conventional ring and sustain a longer seal life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.