Abstract

An accurate characterization for the deformation behavior of conductive particles is important: 1) to understand the anisotropic conductive adhesive (ACA) interconnection and 2) to optimize the ACA bonding parameter. This paper introduces an experimental technique, which has been developed to allow continuous monitoring of deformation characteristics of a single conductive particle. The load-deformation curve of a single conductive particle is measured, which provides the quantitative estimation of the mechanical and electrical characteristics of metal-coated polymer spheres used in ACAs. Based on the load-deformation result of a single conductive particle and the number of trapped particles on a bump, equivalent spring models are used to predict the deformation degree of conductive particles after flip chip assembly. For two kinds of conductive particles with different polymer cores, the mechanical and electrical characteristics of ACA interconnection were studied. Such results are used to further achieve a more sophisticated approach of the ACA bonding process and contact reliability

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call