Abstract

This paper aims to determine the flexural stiffness and strength of a composite made of a polylactic acid reinforced with wood particles, named commercially as Timberfill, manufactured through fused filament fabrication (FFF). The influence of four factors (layer height, nozzle diameter, fill density, and printing velocity) is studied through an L27Taguchi orthogonal array. The response variables used as output results for an analysis of variance are obtained from a set of four-point bending tests. Results show that the layer height is the most influential parameter on flexural strength, followed by nozzle diameter and infill density, whereas the printing velocity has no significant influence. Ultimately, an optimal parameter set that maximizes the material’s flexural strength is found by combining a 0.2-mm layer height, 0.7-mm nozzle diameter, 75% fill density, and 35-mm/s velocity. The highest flexural resistance achieved experimentally is 47.26 MPa. The statistical results are supported with microscopic photographs of fracture sections, and validated by comparing them with previous studies performed on non-reinforced PLA material, proving that the introduction of wood fibers in PLA matrix reduces the resistance of raw PLA by hindering the cohesion between filaments and generating voids inside it. Lastly, five solid Timberfill specimens manufactured by injection molding were also tested to compare their strength with the additive manufactured samples. Results prove that treating the wood-PLA through additive manufacturing results in an improvement of its resistance and elastic properties, being the Young’s module almost 25% lower than the injected material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call