Abstract
This paper presents experimental analysis of laser interferometry-based closed-loop robust motion tracking control for flexure-based four-bar micro/nano manipulator. To enhance the accuracy of micro/nano manipulation, laser interferometry realized robust motion tracking control is established with the experimental facility. This paper contains brief discussions about the error sources associated with the laser interferometry-based sensing and measurement technique, along with detailed error analysis and estimation. Comparative error analysis of capacitive position sensor-based system and laser interferometry-based system is also presented. Robust control demonstrates high precision and accurate motion tracking of the four-bar flexure-based mechanism. The experimental results demonstrate precise motion tracking, where resultant closed-loop position tracking error is of the order of $\pm$ 20 nm, and a steady-state error of about $\pm$ 10 nm. With the experimental study and error analysis, we offer evidence that the laser interferometry-based closed-loop robust motion tracking control can minimize positioning and tracking errors during dynamic motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.