Abstract

In this study, we report experimental analysis of transcriptional terminators in the human pathogen Helicobacter pylori. Previous bioinformatics approaches came to differing conclusions regarding transcriptional termination in this bacterium. We used a reporter construct, the tnpR-encoded resolvase, to assess terminators. In our first experiments, we found that a subset of previously predicted intrinsic terminators for H. pylori are functional. In our second experiments, we used an unbiased screen to identify putative terminators and then characterized 18 of these. We found that these putative terminators overlap genomic regions that are either intergenic or intragenic. Using reverse transcription PCR, we showed that an intergenic terminator and an intragenic antisense terminator function at their endogenous loci. Additionally, we found that putative terminators contain features of both intrinsic and Rho-dependent termination, but that intrinsic terminators define the majority. We were unable to delete rho, however, in H. pylori, suggesting that it is essential and likely important. Finally, we carried out a mutational analysis of one of our randomly identified terminators that has both intrinsic and Rho-dependent features, and found that they are both functional. In conclusion, we found that H. pylori possesses numerous Rho-dependent and intrinsic terminators including some found in intragenic regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.