Abstract

The emergence of new high-performance thermoplastics to replace thermosets in fiber-reinforced polymers puts up a new challenge: their machining. In this study, carbon fiber-reinforced poly-cyclic butylene terephthalate laminates were manufactured, drilled, and inspected. Different commercial drill geometries and machining conditions were compared. Roughness, microscopy, and non-destructive tests allowed us to determine the hole quality as well as delamination. The surface tests showed better results after working at the most common cutting speed (3000 rpm) than at high speed (15,000 rpm) with a constant feed rate. This fact can be explained based on the viscoelastic properties of the matrix that becomes fragile at high cutting speeds. The Delamination factor obtained by means of Ultrasonics and X-ray Computed Tomography also confirmed that the best results are achieved with a Twist drill bit at 3000 rpm. In contrast to carbon fiber-reinforced thermosets, the detected delamination at high cutting speeds is not as remarkable as expected. These results allow us to conclude that this new composite will certainly increase production rate without delamination damage. Chip formation takes also a special role. It can be recovered to be used as reinforcement in manufacturing processes due to the recyclability of the thermoplastic matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.