Abstract

Adding basalt fiber to concrete can improve the mechanical properties of concrete, and it is also one of the best ways to enhance the ultimate bearing capacity of concrete structure. In this paper, the construction performance and the compressive strength of basalt-fiber-reinforced concrete (BFRC) with five kinds of fiber lengths and eight kinds of fiber volume content subjected to an axial load are systematically investigated. The optimum fiber length and fiber volume content are obtained by comprehensively considering the construction performance and compressive strength. Moreover, the prediction model and finite element analysis method of the ultimate bearing capacity of basalt-fiber-reinforced concrete are developed. The results show that the optimum fiber length is about 12–24 mm and the fiber volume content is 0.15%. Adding an appropriate amount of basalt fiber can effectively improve the ultimate bearing capacity of concrete short columns, with maximum and average increases of 28% and 24%, respectively. In addition, the comparison with the experimental results shows that both the proposed prediction method and the finite element modeling method have good applicability, and they can be used to predict the ultimate bearing capacity of the BRFC short columns in practical engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call