Abstract

The shortage of precooling equipment in litchi-producing regions could lead to a high loss rate and poor quality of litchis. It is urgent to develop a portable precooling device for litchi-producing regions. In this study, a novel spray hydrocooler with thermal energy storage (TES) was designed, fabricated, and tested. A simple mathematical model of TES capacity, the ice-on-coil thermal resistance, and refrigeration system was employed to determine the hydrocooler parameters. Then, the structure of the spray hydrocooler was designed. The maximum charging test was implemented with full TES capacity, and the litchi spray hydrocooling experiments were carried out at different charging times (3–6 h), spray flow rates (30–60 L min−1), and litchi loads (8–28 kg) with one-third TES capacity. Results showed that: (1) the spray hydrocooler allows for the rapid and effective precooling of litchis within 15 min after harvest; (2) the hydrocooler can precool 299 kg litchis with one-third TES storage, meeting the precooling requirements; (3) the effective TES capacity achieved 1.25 × 108 J at the maximum TES capacity of the hydrocooler, while the energy efficiency ratio (EER) is 2; (4) the precooling capacity was maximum and the average power consumption was minimum when the litchi load was 23 kg and the spray flow rate was 30 L min−1. Longer charging time is the most important factor in increasing the precooling capacity and reducing the average power consumption. It provides feasible precooling equipment for rapid precooling in litchi-production regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call